Harmonic Morphisms between Semi-riemannian Manifolds

نویسنده

  • Bent Fuglede
چکیده

A smooth map f: M ! N between semi-riemannian manifolds is called a harmonic morphism if f pulls back harmonic functions (i.e., local solutions of the Laplace{Beltrami equation) on N into harmonic functions on M. It is shown that a harmonic morphism is the same as a harmonic map which is moreover horizontally weakly conformal, these two notions being likewise carried over from the riemannian case. Additional characterizations of harmonic morphisms are given. The case where M and N have the same dimension n is studied in detail. When n = 2 and the metrics on M and N are indeenite, the harmonic morphisms are characterized essentially by preserving characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Morphisms from the Classical Compact Semisimple Lie Groups (version 1.050)

In this paper we introduce a new method for manufacturing complex valued harmonic morphisms from semi-Riemannian manifolds. This is employed to yield a variety of new examples from the compact Riemannian Lie groups SO(n), SU(n), Sp(n). We then develop a duality principle and show how this can be used to construct the first known examples of harmonic mor-phisms from the non-compact semi-Riemanni...

متن کامل

Harmonic Morphisms with One-dimensional Fibres on Conformally-flat Riemannian Manifolds

We classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic conformally-flat Riemannian manifolds of dimension at least four, and (2) between conformally-flat Riemannian manifolds of dimensions at least three.

متن کامل

Harmonic Morphisms between Riemannian Manifolds

Harmonic morphisms are mappings between Riemannian manifolds which preserve Laplace’s equation. They can be characterized as harmonic maps which enjoy an extra property called horizontal weak conformality or semiconformality. We shall give a brief survey of the theory concentrating on (i) twistor methods, (ii) harmonic morphisms with one-dimensional fibres; in particular we shall outline the co...

متن کامل

Harmonic Morphisms with 1-dim Fibres on 4-dim Einstein Manifolds

Harmonic morphisms are smooth maps between Riemannian manifolds which preserve Laplace's equation. They are characterised as harmonic maps which are horizontally weakly conformal 14, 20]. R.L. Bryant 7] proved that there are precisely two types of harmonic morphisms with one-dimensional bres which can be deened on a constant curvature space of dimension at least four. Here we prove that, on an ...

متن کامل

The Geometry of Harmonic Maps and Morphisms

We give a survey of harmonic morphisms between Riemannian manifolds, concentrating on their construction and relations with the geometry of foliations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996